BigDecimal

2.2.3

Arbitrary-precision decimal arithmetic in Swift with full math functions and fixed-precision Decimal 32-, 64-, and 128-bit types.
mgriebling/BigDecimal

What's New

v2.2.3

2023-08-11T11:25:08Z

Minor change to package manager version.

BigDecimal

The BigDecimal package provides arbitrary-precision (with an adjustable upper limit for performance) and fixed-precision decimal arithmetic in Swift.

Its functionality falls in the following categories:

  • Arithmetic: addition, subtraction, multiplication, division, remainder and exponentiation

  • Compliant with DecimalFloatingPoint and, optionally, Real protocols.

  • Support for complex decimal numbers via swift-numerics if Real protocol compliance is enabled.

  • Constants: pi, zero, one, ten

  • Functions: exp, log, log10, log2, pow, sqrt, root, factorial, gamma, trig + inverse, hyperbolic + inverse

  • Rounding and scaling according to one of the rounding modes:

    • awayFromZero
    • down
    • towardZero
    • toNearestOrEven
    • toNearestOrAwayFromZero
    • up
  • Comparison: the six standard operators ==, !=, <, <=, >, and >=

  • Conversion: to String, to Double, to Decimal (the Swift Foundation type), to Decimal32 / Decimal64 / Decimal128

  • Support for Decimal32, Decimal64 and Decimal128 values stored as UInt32, UInt64 and UInt128 values respectively, using Densely Packed Decimal (DPD) encoding or Binary Integer Decimal (BID) encoding

  • Support for Decimal32, Decimal64 and Decimal128 mathematical operations

  • Supports the IEEE 754 concepts of Infinity and NaN (Not a Number) with the latter having a signaling option.

Dependencies

BigDecimal requires Swift from macOS 13.3+, iOS 16.4+, macCatalyst 16.4+, tvOS 16.4+, or watchOS 9.4+. It also requires that the Int type be a 64-bit type.

The BigDecimal package depends on the BigInt and UInt128 packages.

dependencies: [
  .package(url: "https://github.com/mgriebling/BigInt.git", from: "2.0.0"),
  .package(url: "https://github.com/mgriebling/UInt128.git", from: "3.0.0")
]

Usage

In your project's Package.swift file add a dependency like

dependencies: [
  .package(url: "https://github.com/mgriebling/BigDecimal.git", from: "2.0.0"),
]

Basics

Creating BigDecimal's

// From an integer
let x1 = BigDecimal(270) // = 270
let x2 = BigDecimal(270, -2)  // = 2.70
let x3 = BigDecimal(314159265, -8) // = 3.14159265
  
// From a BInt
let x4 = BigDecimal(BInt(314159265), -8) // = 3.14159265
let x5 = BigDecimal(BInt(100), -3) // = 0.100
  
// From a string literal
let rnd1 = Rounding(.halfEven, 2)
let x6 = BigDecimal("0.123").round(rnd1) // = 0.12
let x7 = BigDecimal("3.14159265") // = 3.14159265
  
// From a double
let rnd2 = Rounding(.halfEven, 9)
let x8 = BigDecimal(0.1).round(rnd2)  // = 0.100000000
let x9 = BigDecimal(0.1) // = 0.1000000000000000055511151231257827021181583404541015625
let x10 = BigDecimal(3.14159265) // = 3.141592650000000208621031561051495373249053955078125
let x11 = BigDecimal(3.14159265).round(rnd2) // = 3.14159265

// From Decimal32 / 64 / 128 encoded values
let x32 = BigDecimal(UInt32(0x223000f0), .dpd) // = 1.70
let x64 = BigDecimal(UInt64(0x22300000000000f0), .dpd) // = 1.70
let x128 = BigDecimal(UInt128(0x2207800000000000, 0x00000000000000f0), .dpd) // = 1.70

Because Double values cannot represent all decimal values exactly, one sees that BigDecimal(0.1) is not exactly equal to 1 / 10 as one might expect. On the other hand, BigDecimal("0.1") is in fact exactly equal to 1 / 10.

Converting BigDecimal's

BigDecimal values can be converted to String values, Double values, Decimal (the Swift Foundation type) values, and Decimal32, Decimal64, and Decimal128 values.

To String

let x1 = BigDecimal("2.1").pow(3)
print(x1.asString()) // = 9.261

To Double

let x2 = BigDecimal("2.1").pow(3)
print(x2.asDouble()) // = 9.261

To Decimal (the Swift Foundation type)

let x3 = BigDecimal("1.70")
let xd: Decimal = x3.asDecimal()
print(xd) // = 1.70

To Decimal32 / 64 / 128

let x4 = BigDecimal("1.70")
let x32: UInt32 = x4.asDecimal32(.dpd)
let x64: UInt64 = x4.asDecimal64(.dpd)
let x128: UInt128 = x4.asDecimal128(.dpd)
print(String(x32, radix: 16))  // = 223000f0
print(String(x64, radix: 16))  // = 22300000000000f0
print(String(x128, radix: 16)) // = 220780000000000000000000000000f0

Comparing BigDecimal's

The six standard operators == != < <= > >= are available to compare values. The two operands may either be two BigDecimal's or a BigDecimal and an integer. If neither of the operands is NaN, the operators perform as expected. For example, -BigDecimal/infinity is less than any finite number which in turn is less than +BigDecimal/infinity.

Please see the section About NaN's for the rules governing comparison involving NaN's.

The static function BigDecimal.maximum(x:y:) returns the non-NaN number if either x or y is NaN; otherwise it returns the larger of x and y.

The static function BigDecimal.minimum(x:y:) returns the non-NaN number if either x or y is NaN; otherwise it returns the smaller of x and y.

Exact Arithmetic

The '+', '-', and '*' operators always produce exact results. The '/' operator truncates the exact result to an integer.

let a = BigDecimal("25.1")
let b = BigDecimal("12.0041")

print(a + b) // = 37.1041
print(a - b) // = 13.0959
print(a * b) // = 301.30291
print(a / b) // = 2

The quotientAndRemainder function produces an integer quotient and exact remainder

print(a.quotientAndRemainder(b)) // = (quotient: 2, remainder: 1.0918)

Rounded Arithmetic

Rounding is controlled by Rounding objects that contain a rounding mode and a precision, which is the number of digits in the rounded result.

The rounding modes are:

  • awayFromZero - round away from 0
  • down - round towards -infinity
  • up - round towards +infinity
  • towardZero - round towards 0
  • toNearestOrEven - round to nearest, ties to even
  • toNearestOrAwayFromZero - round to nearest, ties away from 0

The add, subtract and multiply methods have a Rounding parameter that controls how the result is rounded.

Examples

let a = BigDecimal("25.1E-2")
let b = BigDecimal("12.0041E-3")
let rnd = Rounding(.ceiling, 3)
	
print(a + b) // = 0.2630041
print(a.add(b, rnd)) // = 0.264
print(a - b) // = 0.2389959
print(a.subtract(b, rnd)) // = 0.239
print(a * b) // = 0.0030130291
print(a.multiply(b, rnd)) // = 0.00302

Precise division

The divide method, that has an optional rounding parameter, performs division. If the quotient has finite decimal expansion, the rounding parameter may or may not be present, it is used if it is there. If the quotient has infinite decimal expansion, the rounding parameter must be present and is used to round the result.

Examples

let x1 = BigDecimal(3)
let x2 = BigDecimal(48)
print(x1.divide(x2))  // = 0.0625
let rnd = Rounding(.ceiling, 2)
print(x1.divide(x2, rnd))  // = 0.063
	
let x3 = BigDecimal(3)
let x4 = BigDecimal(49)
print(x3.divide(x4))       // = NaN because the quotient has infinite decimal expansion 0.06122448...
print(x3.divide(x4, rnd))  // = 0.062

Data Encoding

BigDecimal's can be encoded as Data objects (perhaps for long term storage) using the asData method, and they can be regenerated from their Data encoding using the appropriate initializer. The encoding rules are:

  • The encoding contains nine or more bytes. The first eight bytes is a Big Endian encoding of the signed exponent. The remaining bytes is a Big Endian encoding of the signed significand.
  • NaN's (and signaling NaNs) are encoded as a single byte = 0
  • positive infinity is encoded as a single byte = 1
  • negative infinity is encoded as a single byte = 2
  • negative zero is encoded as a single byte = 3

It is also possible to encode BigDecimal's using the JSONEncoder or as a property list using the PropertyListEncoder as in the second example.

Examples

let x1 = BigDecimal(1000, 3) // = 1000000
print(Bytes(x1.asData()))   // = [0, 0, 0, 0, 0, 0, 0, 3, 3, 232]

let x2 = BigDecimal(1000, -3) // = 1.000
print(Bytes(x2.asData()))   // = [255, 255, 255, 255, 255, 255, 255, 253, 3, 232]

let x3 = BigDecimal(-1000, 3) // = -1000000
print(Bytes(x3.asData()))   // = [0, 0, 0, 0, 0, 0, 0, 3, 252, 24]

let x4 = BigDecimal(-1000, -3) // = -1.000
print(Bytes(x4.asData()))   // = [255, 255, 255, 255, 255, 255, 255, 253, 252, 24]
let encoder = JSONEncoder()
let x1 = BigDecimal(1000, 3) // = 1000000
if let encoded = try? encoder.encode(x1) {
    // save `encoded` data somewhere or

    // extract the JSON string from the data
    if let json = String(data: encoded, encoding: .utf8) {
        print(json)
    }
}

Decimal Formats

Decimal values can be represented not only as BigDecimal's but also as Double values, Decimal (the Swift Foundation type) values, and Decimal32 / 64 / 128 values. The strategy for working with other than BigDecimal values can be summarized as follows:

  • convert the input values to BigDecimal's using the appropriate initializer
  • compute the results
  • convert the results back to the desired output format using the appropriate conversion function

As an example, suppose you must compute the average value of three values a, b and c which are encoded as Decimal32 values using Densely Packed Decimal (DPD) encoding. The result x must likewise be a Decimal32 value encoded using DPD.

// Input values
let a = UInt32(0x223e1117)  // = 7042.17 DPD encoded
let b = UInt32(0x22300901)  // =   22.01 DPD encoded
let c = UInt32(0xa230cc00)  // = -330.00 DPD encoded
	
// Convert to BigDecimal's
let A = BigDecimal(a, .dpd)
let B = BigDecimal(b, .dpd)
let C = BigDecimal(c, .dpd)
	
// Compute result
let X = (A + B + C).divide(3, Rounding.decimal32)
print(X)                    // = 2244.727
	
// Convert result back to Decimal32
let x = X.asDecimal32(.dpd)
print(String(x, radix: 16)) // = 2a2513a7 (= 2244.727 DPD encoded)

About Infinities

The constants BigDecimal.infinity and -BigDecimal.infinity represent +Infinity and -Infinity respectively. -infinity compares less than every finite number, and every finite number compares less than infinity. Arithmetic operations involving infinite values is illustrated by the examples below:

let InfP = BigDecimal.infinity // Just to save some writing
let InfN = -BigDecimal.infinity

print(InfP + 3)     // +Infinity
print(InfN + 3)     // -Infinity
print(InfP + InfP)  // +Infinity
print(InfP - InfP)  // NaN
print(InfP * 3)     // +Infinity
print(InfP * InfP)  // +Infinity
print(InfP * InfN)  // -Infinity
print(InfP * 0)     // NaN
print(InfP / 3)     // +Infinity
print(InfP / 0)     // +Infinity
print(1 / InfP)     // 0
print(1 / InfN)     // 0
print(InfP / InfP)  // NaN
print(InfP < InfP)  // false
print(InfP == InfP) // true
print(InfP != InfP) // false
print(InfP > InfP)  // false
print(Rounding.decimal32.round(InfP))    // +Infinity
print(InfP.scale(4))    // +Infinity
print(InfP.scale(-4))   // +Infinity
print(InfP.withExponent(10, .up))   // NaN

About NaN's

The IEEE 754 standard specifies two NaN's, a quiet NaN (qNaN) and a signaling NaN (sNaN). The constant BigDecimal.NaN corresponds to the quiet NaN and BigDecimal.signalingNan to the signaling NaN.

Arithmetic operations where one or more input is NaN, return NaN as result. Comparing NaN values is illustrated by the example below:

let NaN = BigDecimal.NaN // Just to save some writing
	
print(3 < NaN)      // false
print(NaN < 3)      // false
print(NaN < NaN)    // false
print(3 <= NaN)     // false
print(NaN <= 3)     // false
print(NaN <= NaN)   // false
print(3 > NaN)      // false
print(NaN > 3)      // false
print(NaN > NaN)    // false
print(3 >= NaN)     // false
print(NaN >= 3)     // false
print(NaN >= NaN)   // false
print(3 == NaN)     // false
print(NaN == 3)     // false
print(NaN == NaN)   // false
print(3 != NaN)     // true
print(NaN != 3)     // true
print(NaN != NaN)   // true !!!

Because NaN != NaN is true, sorting a collection of BigDecimal's doesn't work if the collection contains one or more NaN's. This is so, even if BigDecimal conforms to the Comparable protocol. Note: It is possible to sort values including NaNs using the isTotallyOrdered(belowOrEqualTo:) method.

The following example uses isTotallyOrdered(belowOrEqualTo:) to sort an array of floating-point values, including some that are NaN:

var numbers = [2.5, 21.25, 3.0, .nan, -9.5]
numbers.sort { !$1.isTotallyOrdered(belowOrEqualTo: $0) }
print(numbers)
// Prints "[-9.5, 2.5, 3.0, 21.25, nan]"

There is a static boolean variable BigDecimal.NaNFlag which is set to true whenever a NaN value is generated. It can be set to false by application code. Therefore, to check if a sequence of code generates NaN, set NaNFlag to false before the code and check it after the code. Since a BigDecimal has a stored property isNaN, it is of course also possible to check for a NaN value at any time.

References

Algorithms from the following books and papers have been used in the implementation. There are references in the source code where appropriate.

  • [GRANLUND] - Moller and Granlund: Improved Division by Invariant Integers, 2011
  • [IEEE] - IEEE Standard for Floating-Point Arithmetic, 2019
  • [KNUTH] - Donald E. Knuth: Seminumerical Algorithms, Addison-Wesley 1971

Acknowledgement

  1. Much of the original BigDecimal (pre-V2) was created by Leif Ibsen.
  2. Some unit test cases come from the General Decimal Arithmetic
  3. Additional unit test cases and some algorithms are from the Intel C Decimal Floating-Point Math library
  4. Floating point math functions are translated to Swift from the Java BigDecimalMath implementation by Eric Obermühlner.

Description

  • Swift Tools 5.6.0
View More Packages from this Author

Dependencies

Last updated: Tue Jan 07 2025 07:41:06 GMT-1000 (Hawaii-Aleutian Standard Time)